98 research outputs found

    Nerve damage induced skeletal muscle atrophy is associated with increased accumulation of intramuscular glucose and polyol pathway intermediates

    Get PDF
    Perturbations in skeletal muscle metabolism have been reported for a variety of neuromuscular diseases. However, the role of metabolism after constriction injury to a nerve and the associated muscle atrophy is unclear. We have analyzed rat tibialis anterior (TA) four weeks after unilateral constriction injury to the sciatic nerve (DMG) and in the contralateral control leg (CTRL) (n = 7) to investigate changes of the metabolome, immunohistochemistry and protein levels. Untargeted metabolomics identified 79 polar metabolites, 27 of which were significantly altered in DMG compared to CTRL. Glucose concentrations were increased 2.6-fold in DMG, while glucose 6-phosphate (G6-P) was unchanged. Intermediates of the polyol pathway were increased in DMG, particularly fructose (1.7-fold). GLUT4 localization was scattered as opposed to clearly at the sarcolemma. Despite the altered localization, we found GLUT4 protein levels to be increased 7.8-fold while GLUT1 was decreased 1.7-fold in nerve damaged TA. PFK1 and GS levels were both decreased 2.1-fold, indicating an inability of glycolysis and glycogen synthesis to process glucose at sufficient rates. In conclusion, chronic nerve constriction causes increased GLUT4 levels in conjunction with decreased glycolytic activity and glycogen storage in skeletal muscle, resulting in accumulation of intramuscular glucose and polyol pathway intermediates

    ChlamyCyc - a comprehensive database and web-portal centered on _Chlamydomonas reinhardtii_

    Get PDF
    *Background* - The unicellular green alga _Chlamydomonas reinhardtii_ is an important eukaryotic model organism for the study of photosynthesis and growth, as well as flagella development and other cellular processes. In the era of high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the whole cellular system of a single organism.
*Results* - In the framework of the German Systems Biology initiative GoFORSYS a pathway/genome database and web-portal for _Chlamydomonas reinhardtii_ (ChlamyCyc) was established, which currently features about 270 metabolic pathways with related genes, enzymes, and compound information. ChlamyCyc was assembled using an integrative approach combining the recently published genome sequence, bioinformatics methods, and experimental data from metabolomics and proteomics experiments. We analyzed and integrated a combination of primary and secondary database resources, such as existing genome annotations from JGI, EST collections, orthology information, and MapMan classification.
*Conclusion* - Chlamycyc provides a curated and integrated systems biology repository that will enable and assist in systematic studies of fundamental cellular processes in _Chlamydomonas reinhardtii_. The ChlamyCyc database and web-portal is freely available under http://chlamycyc.mpimp-golm.mpg.de

    ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii

    Get PDF
    BACKGROUND: The unicellular green alga Chlamydomonas reinhardtii is an important eukaryotic model organism for the study of photosynthesis and plant growth. In the era of modern high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the molecular and cellular organization of a single organism. RESULTS: In the framework of the German Systems Biology initiative GoFORSYS, a pathway database and web-portal for Chlamydomonas (ChlamyCyc) was established, which currently features about 250 metabolic pathways with associated genes, enzymes, and compound information. ChlamyCyc was assembled using an integrative approach combining the recently published genome sequence, bioinformatics methods, and experimental data from metabolomics and proteomics experiments. We analyzed and integrated a combination of primary and secondary database resources, such as existing genome annotations from JGI, EST collections, orthology information, and MapMan classification. CONCLUSION: ChlamyCyc provides a curated and integrated systems biology repository that will enable and assist in systematic studies of fundamental cellular processes in Chlamydomonas. The ChlamyCyc database and web-portal is freely available under http://chlamycyc.mpimp-golm.mpg.de

    Platelet-Rich Plasma Intramuscular Injections — Antinociceptive Therapy in Myofascial Pain Within Masseter Muscles in Temporomandibular Disorders Patients: A Pilot Study

    Get PDF
    Background and Objective: The objective of this study was to explore the nociceptive effect of platelet-rich plasma (PRP) intramuscular injections in myofascial pain of masseter muscles in patients with TMD.Methods: Patients diagnosed with myofascial pain were assessed for eligibility for the study. Masticatory muscle disorder was diagnosed based on the Research Diagnostic Criteria for Temporomandibular Disorders (Ia and Ib). A total of 80 patients were enrolled in the study; 58 of them (21 male and 37 female, 29.4 ± 6.53 years old) met the inclusion criteria and were randomized to one of the two groups: Group I (n = 29) and Group II (n = 29). The first group received injections with PRP and the second group received injections with isotonic saline as the control group (0.9% NaCl). The Visual Analog Scale (VAS) was used to determine the pain intensity changes during follow-up visits in each group.Results: A significant improvement in pain intensity in VAS scale was observed, with 58% reduction in the experimental group and 10.38% in the control placebo group, 5 days after the injections (Day 5). The pain intensity reduction (VAS) 14 days after the injections (Day 14) in experimental group was 47.16 and 4.62% in control group, according to the baseline values (Day 0).Conclusions: Intramuscular injection of PRP was a successful method for reducing myofascial pain within masseter muscles in temporomandibular disorders patients. However, the use of PRP for the treatment of myofascial pain within masticatory muscles requires further, clinical trials evaluation.Clinical Trial Registration: Bioethical Commission at the Silesian Medical Chamber in Katowice, Poland 44/2017 as well as at ClinicalTrials.gov NCT03323567 (December 13, 2017)

    A proteomic investigation of soluble olfactory proteins in Anopheles gambiae

    Get PDF
    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are small soluble polypeptides that bind semiochemicals in the lymph of insect chemosensilla. In the genome of Anopheles gambiae, 66 genes encode OBPs and 8 encode CSPs. Here we monitored their expression through classical proteomics (2D gel-MS analysis) and a shotgun approach. The latter method proved much more sensitive and therefore more suitable for tiny biological samples as mosquitoes antennae and eggs. Females express a larger number and higher quantities of OBPs in their antennae than males (24 vs 19). OBP9 is the most abundant in the antennae of both sexes, as well as in larvae, pupae and eggs. Of the 8 CSPs, 4 were detected in antennae, while SAP3 was the only one expressed in larvae. Our proteomic results are in fairly good agreement with data of RNA expression reported in the literature, except for OBP4 and OBP5, that we could not identify in our analysis, nor could we detect in Western Blot experiments. The relatively limited number of soluble olfactory proteins expressed at relatively high levels in mosquitoes makes further studies on the coding of chemical messages at the OBP level more accessible, providing for few specific targets. Identification of such proteins in Anopheles gambiae might facilitate future studies on host finding behavior in this important disease vector. © 2013 Mastrobuoni et al

    The conserved histone chaperone LIN-53 is required for normal lifespan and maintenance of muscle integrity in Caenorhabditis elegans.

    Get PDF
    Whether extension of lifespan provides an extended time without health deteriorations is an important issue for human aging. However, to which degree lifespan and aspects of healthspan regulation might be linked is not well understood. Chromatin factors could be involved in linking both aging aspects, as epigenetic mechanisms bridge regulation of different biological processes. The epigenetic factor LIN-53 (RBBP4/7) associates with different chromatin-regulating complexes to safeguard cell identities in Caenorhabditis elegans as well as mammals, and has a role in preventing memory loss and premature aging in humans. We show that LIN-53 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in C. elegans muscles to ensure functional muscles during postembryonic development and in adults. While mutants for other NuRD members show a normal lifespan, animals lacking LIN-53 die early because LIN-53 depletion affects also the histone deacetylase complex Sin3, which is required for a normal lifespan. To determine why lin-53 and sin-3 mutants die early, we performed transcriptome and metabolomic analysis revealing that levels of the disaccharide trehalose are significantly decreased in both mutants. As trehalose is required for normal lifespan in C. elegans, lin-53 and sin-3 mutants could be rescued by either feeding with trehalose or increasing trehalose levels via the insulin/IGF1 signaling pathway. Overall, our findings suggest that LIN-53 is required for maintaining lifespan and muscle integrity through discrete chromatin regulatory mechanisms. Since both LIN-53 and its mammalian homologs safeguard cell identities, it is conceivable that its implication in lifespan regulation is also evolutionarily conserved
    corecore